NANOMECHANICS AND MATERIALS RESEARCH LABORATORY

Nanomaterials for Energy Applications

MAIN

PEOPLE

PUBLICATIONS

OPEN POSITIONS

<BACK NEXT>

Thin film materials for high capacity battery anodes, such as amorphous and crystalline Si, suffer from fragmentation at high insertion levels of Li+.

Refinement of the miscrostructure of Si films allows for large volume changes without fracture. We utilize Gancing Angle Deposition (GLAD) to grow highly discretized Si thin films with uniform features using E-beam evaporation on large Si wavers and foils, Figure (a). Special design design considerations are taken so that individual springs in theses Si films deform uniformly during lithiation, Figure (b), without distortions, Figure (c). Figures (b) and (c) show in situ lithiation experiments inside a Scanning Electron Microscope (SEM).

(a)

(b)

(c)

                                                                                         Related Publications

  1. D. Antartis, H. Wang, J. Wang, S. J. Dillon, H.B. Chew, I. Chasiotis, “Nanofibrillar Si Helices for Low-Stress, High-Capacity Li+ Anodes with Large Affine Deformations,” ACS Applied Materials and Interfaces 11, pp. 11715−11721, (2019).

  2. J. F. Gonzalez, D. Antartis, M. Martinez, S. J. Dillon, I. Chasiotis, J. Lambros, “Three-Dimensional Study of Graphite-Composite Electrode Chemo-Mechanical Response using Digital Volume Correlation”, Experimental Mechanics, 58(4), 573-583, (2018).

  3. J. F. Gonzalez, D. Antartis, I. Chasiotis, S.J. Dillon, J. Lambros, “In-situ X-ray Micro-CT Characterization of Chemo-Mechanical Relaxations during Sn Lithiation,” Journal of Power Sources 381, pp. 181–189, (2018).

  4. D. Das, L. Sanchez, J. Martin, B. Power, S. Isaacson, R.G. Polcawich, I. Chasiotis. Control of Ferroelectric Properties of PbZr0.52Ti0.48O3 (PZT) Films through Texture. Journal of the American Ceramics Society 101, pp. 2965–2975, (2018).

  5. D. Das, L. Sanchez, J. Martin, B. Power, S. Isaacson, R.G. Polcawich, I. Chasiotis, “Control of the Mechanical Response of Freestanding of PbZr0.52Ti0.48O3 (PZT) Films through Texture”, Applied Physics Letters 109, pp. 131905, (2016).

  6. D. Das, B. Power, J.P. Martin, R.G. Polcawich, I. Chasiotis, “Role of Oxide Seed Layer in Plastic Response of Epitaxially Grown Textured Metal Films”, Acta Materialia 112, pp. 390-402, (2016).

  7. J. Gonzalez, K. Sun, M. Huang, S. Dillon, I. Chasiotis, and J. Lambros, “X-ray microtomography characterization of Sn particle evolution during lithiation/delithiation in lithium ion batteries”, Journal of Power Sources 285, pp. 205–209, (2015).

  8. D. Antartis, S. Dillon, I. Chasiotis, “Effect of Porosity in Electrochemical and Mechanical Properties of Composite Li-ion Anodes”, Journal of Composite Materials 49, pp. 1849-1862, (2015).

  9. J. Gonzalez, K. Sun, M. Huang, J. Lambros, S. Dillon, I. Chasiotis, “Three dimensional studies of particle failure in silicon based composite electrodes for lithium ion batteries”, Journal of Power Sources 269, pp. 334-343, (2014).

  10. D. Antartis, I. Chasiotis, “Residual Stress and Mechanical Property Measurements in Amorphous Si Photovoltaic Thin Films”, Solar Energy 105, pp. 694–704, (2014).

  11. L. Sun, N. Karanjgaokar, K. Sun, I. Chasiotis, W.C. Carter, S. Dillon, “High-Strength All-Solid Lithium Ion Electrodes Based on Li4Ti5O12”, Journal of Power Sources 196, pp. 6507–6511, (2011).

Visit counter For Websites